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Abstract 14 

The influence of crystallographic orientation, contact size and surface roughness effects on incipient 15 

plasticity in tungsten were investigated by nanoindentation with indenters with a range of end radius 16 

(150, 350, 720 and 2800 nm) in single crystal samples with the (100) and (111) orientations. Results 17 

for the single crystals were compared to those for a reference polycrystalline tungsten sample tested 18 

under the same conditions. Surface roughness measurements showed that the Ra surface roughness 19 

was around 2, 4, and 6 nm for the (100), (111) and polycrystalline samples respectively. A strong 20 

size effect was observed, with the stress for incipient plasticity increasing as the indenter radius 21 

decreased. The maximum shear stress approached the theoretical shear strength when W(100) was 22 

indented using the tip with the smallest radius. The higher roughness and greater dislocation density 23 

on the W(111) and polycrystalline samples contributed to yield occurring at lower stresses.  24 
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 33 

Nomenclature: 34 

a Contact radius 35 

Al Aluminium 36 

E or Es Elastic modulus of the material 37 

Er Reduced elastic modulus 38 

h* Characteristic length 39 

hc Contact depth 40 

hmax Depth under maximum load at pop-in 41 

hr Residual indentation depth 42 

H0 Macroscopic hardness 43 

L Applied load 44 

G Shear modulus  45 

Mo Molybdenum 46 

Pm Mean contact pressure 47 

p0 Maximum contact pressure 48 

R End radius of the indenter 49 

Ra Average surface roughness 50 

Ta Tantalum 51 

W Tungsten 52 

𝜏𝑚𝑎𝑥 Maximum shear stress 53 

 54 

 55 

 56 

 57 

1. Introduction 58 

Tungsten (W) is a technologically important BCC metal with potential applications in the next 59 

generation of nuclear reactors, being a favoured choice for plasma-facing components in fusion 60 

reactors [1-3]. ISO:14577 specifies that W being very close to elastically isotropic (Zener anisotropy 61 

ratio is 1.01) while having a high elastic modulus makes it  an important reference material for 62 

indirectly calibrating nanomechanical test instruments due to its high sensitivity to the instrument 63 

frame stiffness. It has the highest melting point of all the metals and its high temperature 64 

nanomechanical behaviour is beginning to be explored [4]. However, as yet relatively little attention 65 

has been given to the influence of crystallographic orientation, loading rate and surface roughness, 66 

and how these might influence size effects in incipient plasticity and hardness at the nano-/ and 67 

micro/-scale [5]. 68 

 During nanoindentation, both BCC and FCC metals can show displacement bursts that are 69 

known as “pop-ins” [6-8]. Typically in BCC metals such as W, Cr, Mo and Ta, a single yield event 70 

is observed while for close packed metals multiple pop-in (“staircase”) behaviour is more common 71 
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[9]. It is generally accepted that with a sharp indenter, incipient plasticity at the pop-in event occurs 72 

due to homologous dislocation nucleation and the shear stress required can approach the theoretical 73 

strength [10]. The presence of thick thermally grown oxide layers can modify the stress 74 

distributions under the indenter so that a pop-in may be associated with oxide fracture [6]. However, 75 

as the native oxide on tungsten is much thinner, of the order of ~0.7 nm thick at room temperature 76 

[11], oxide fracture is not thought to contribute to the observed behaviour [12]. Shim et al. [13] 77 

noted that the increase in strength as the size of the contact decreases can be considered to be a 78 

different type of indentation size effect to that commonly seen in hardness, since the latter depends 79 

on the yielding and work-hardening behaviour of the material and the former on the stress to initiate 80 

dislocation plasticity. In a fusion reactor, tungsten is subjected to intense bombardment from alpha 81 

particles and hydrogen ions which can cause indentation size effects[14]. Being able to deconvolute 82 

the origins of the different indentation size effects (ISEs) on the observed behaviour is essential 83 

since they will all contribute to the behaviour at a similar scale (e.g. within ~100 nm of the surface).  84 

 Yao et al. [1] reported a dependence on crystallographic orientation on electrochemically 85 

polished, vacuum annealed (12h at 950 ºC) and D-implanted single crystal tungsten with the critical 86 

load for pop-in with a R = 675 nm indenter being much larger on (100) and (110) surfaces than on 87 

the (111) orientation. Contrarily, they found no orientation dependence for hardness. 88 

Stelmashenkoet al. [15] reported Vickers hardness measurements showing higher hardness and 89 

higher pile-up around the indentations for W(100). Pethica’s group noted that after mechanical 90 

polishing a number of dislocation systems are active at low load in W(100) and a clear single pop-in 91 

was not observed [16]. They also reported that the hardness of mechanically polished W samples 92 

determined at depths higher than the pop-in event was higher than that of electropolished samples.  93 

 Most studies on incipient plasticity of pure metals have used indenters of one or at most two 94 

radii, making the effect of tip radius difficult to establish accurately. There have been two recent 95 

reports using a wide range of tip radius. Shim et al. [13] studied the influence of indenter radius (R 96 

= 0.58 to 209 microns) on pop-in occurring in the FCC metal Ni(100) and reported that the critical 97 
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loads and maximum shear stresses under the indenter increased as the radius decreased. Wu et al. 98 

[17] investigated the onset of plasticity in the BCC metal chromium using indenters with tip radius 99 

ranging from 60-759 nm and also found that the stress required for incipient plasticity increased 100 

with a reduction in tip radius.  101 

 There has been recent interest in the influence of the surface state on the load required for 102 

pop-in [8, 9, 12, 14]. Although it is generally accepted that pop-in events require highly polished 103 

surfaces, it is a common practice in the literature for either the surface roughness to notbe quoted or 104 

for only an approximate measure of Ra to be provided. On Al(001), Shibutani et al. [8] observed that 105 

the critical load scaled inversely with surface roughness. A reduction in Ra from ~2.5 nm to under 106 

0.5 nm resulted in the critical load increasing by a factor of 3. Bahr et al. [6] reported that, as 107 

opposed to electropolished surfaces, mechanically polished W single crystals did not show pop-ins. 108 

Biener et al [9] reported that on Ta(001) there was no difference between electropolished or 109 

mechanically polished surfaces provided a high-quality surface finish was obtained. They found a 110 

tight distribution in the critical load for pop-in for a Ta(001) surface with the RMS roughness well 111 

below 1 nm. Introducing surface roughness on Ta by low-energy Ar+ ion bombardment suppressed 112 

the linear elastic regime and the pop-in behaviour.  113 

 This work reports novel findings obtained from nanoindentation experiments performed on 114 

tungsten samples. The objective of this study was to investigate the contribution of size effects to 115 

incipient plasticity in tungsten using a wide range of indenter radius (0.15-2.8 microns). Alongside 116 

this, the influence of crystallographic orientation, loading rate and surface roughness were also 117 

studied on single crystals of tungsten with the (100) and (111) orientation and a reference 118 

polycrystalline tungsten sample. Nanoindentation data at a lower load were supplemented by 119 

measurements to 500 mN to determine the conventional indentation size effect in hardness.  120 

 121 

 122 

 123 
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2. Experimental 124 

2.1 Materials  125 

Two high purity polished tungsten single crystals and a high purity polycrystalline tungsten certified 126 

reference sample were tested. The sample with (100) orientation was provided by KRISS (Korea), 127 

originally for the VAMAS TWA22 Intercomparison on nanoindentation, being supplied by 128 

Goodfellow (USA) and polished by KRISS. The sample with (111) orientation was supplied by 129 

Goodfellow (UK) and was of thickness 2 mm and diameter 6 mm, and was polished on one side to 130 

better than 1 micron (W 002166). The quoted elastic modulus and Poisson’s ratio of the samples 131 

were 411 GPa and 0.28 respectively. The polycrystalline certified reference tungsten sample (“JGA-132 

105”, Instrumented Indentation Reference Block, DataSure-IIT, NPL, Teddington, UK) was 133 

obtained from NPL, based in the UK. Its elastic modulus and Poisson’s ratio were determined by 134 

NPL in accordance with BS EN 843-2:2006. The certified value of E obtained by NPL was 411.5 ± 135 

1.9 GPa and the Poisson’s ratio was 0.2806 ± 0.0017. The density of the polycrystalline sample was 136 

1.9259 g cm-3. The sample was coarse-grained with an average grain size in the region of 10 µm. 137 

The tungsten samples were tested as-received and no further attempt was made to modify surface 138 

roughness or near-surface defect density by further polishing or annealing steps. Surface roughness 139 

was measured over a line profile using the Surface Topography option in the Scanning Module of 140 

the NanoTest using (i) a spheroconical diamond probe with  a nominal end radius of 5 microns (the 141 

actual end radius was separately determined as 4 microns) (ii) a well-worn Berkovich indenter with 142 

an end radius of 1 µm. Surface roughness of the single crystal samples was also measured at the 5 143 

µm x 5 µm scale by AFM (NanoSurf Nanite B). Table 1 summarises the surface roughness data. 144 

The AFM images revealed the presence of very fine polishing marks on the surface of the (111) 145 

oriented W which were absent on the (100) oriented W. 146 

 147 

 148 

 149 
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Table 1.Surface Roughness of the measured samples 150 

 Ra surface roughness (nm) 

 AFM (5 m x 5 

m area) 

Line scan with R = 1.0 

m diamond (over 10 

m length) 

Line scan with R = 4.0 

m diamond (over 10 

m length) 

W(100) 1.4 ± 0.6 2.0 ± 0.3 2.3 ± 0.5 

W(111) 4.0 ± 0.7 3.1 ± 0.4 5.5 ± 1.6 

Polycrystalline W Not measured 5.5 ± 1.4 6.9 ± 2.1 

 151 

2.2. Nanoindentation  152 

Nanoindentation testing of the tungsten samples was performed with a commercial nanomechanical 153 

test instrument (NanoTest Platform 3, Micro Materials Ltd., Wrexham, UK) which had been 154 

calibrated in accordance with the ISO 14577-4. The polycrystalline W was used to determine the 155 

frame compliance of the instrument which was confirmed by measurements in other reference 156 

metallic samples. The end radii of the diamond indenters were calibrated by fully elastic 157 

nanoindentation measurements into fused silica and sapphire reference samples. Three of the 158 

indenters used were Berkovich indenters of different end radius and one was spheroconical 159 

diamond with a nominalend radius of 5 µm. The fused silica was a nanoindentation intercomparison 160 

reference sample (obtained from KRISS, Korea) with a nominal elastic modulus of 72.5 GPa and 161 

Poisson’s ratio of 0.17. Its elastic properties were separately cross-checked against those of a 162 

certified sample (JGC-105, NPL DataSure-IIT reference block) and were found to be consistent to 163 

well within 0.5 %. The sapphire was a single crystal with (001) orientation (an intercomparison 164 

reference sample from the EU “Nanoindent” project supplied by Roditi, UK). The end radii were 165 

150, 350, 720 and 2800 nm.  166 

The loading conditions for the four indenters are summarised in Table 2.  167 

 168 

Table 2. Nanoindentation test conditions 169 

 Loading rate 

(N/s) 

Peak load (N) Hold at peak 

load (s) 

Unloading rate 

(N/s) 

R = 150 nm 25, 100 500 3 50 

R = 350 nm 25, 50, 100, 200 500 3 50 

R = 720 nm 25, 100 1000 3 333 

R = 2800 nm 100 3000 3 333 

 170 
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Adjacent indentations were made sufficiently far apart (30 m) to avoid influence from interaction 171 

of indentations. The mean values of the critical load, depth, mean pressure and maximum shear 172 

stress at pop-in together with their standard deviations for each of the indenters are summarised in 173 

Table 3 (a-d). The mean values shown in Table 3 were derived from 35-50 indents for each 174 

sample/loading rate/indenter combination with the three sub-micron radius indenters and from 20 175 

indents for R = 2800 µm. 176 

Table 3(a). Pop-in behaviour with the 150 nm end radius indenter 177 

 Critical load 

(N) 

Depth at pop-in 

(nm) 

Mean pressure 

at pop-in (GPa) 

Maximum 

shear stress at 

pop-in (GPa) 

W(100) at 25 N/s 153 ± 99 9.2 ± 3.8 33.7 ± 6.7 15.4 ± 3.1 

W(100) at 100 N/s 124 ± 85 7.2 ± 3.0 32.2 ± 6.6 14.4 ± 2.8 

W(111) at 25 N/s 36 ± 13 3.1 ± 0.9 24.8 ± 3.4 9.8 ± 1.1 

W(111) at 100 N/s 37 ± 13 3.4 ± 0.8 23.2 ± 2.9 9.9 ± 3.5 

 178 

Table 3(b). Pop-in behaviour with the 350 nm end radius indenter 179 

 Critical load 

(N) 

Depth at pop-in 

(nm) 

Mean pressure 

at pop-in (GPa) 

Maximum 

shear stress at 

pop-in (GPa) 

W(100) at 25 N/s 182 ± 91 7.8 ± 2.8 20.3 ± 3.3 9.4 ± 1.5 

W(100) at 100 N/s 173 ± 102 7.1 ± 3.0 21.1 ± 3.6 9.2 ± 1.7 

W(111) at 25 N/s 69 ± 60 4.3 ± 2.3 13.3 ± 2.6 6.7 ± 1.4 

W(111) at 100 N/s 67 ± 29 4.3 ± 1.3 16.2 ± 1.3 6.8 ± 0.7 

Polycrystalline W at 

25 N/s 

74 ± 62 4.3 ± 3.0 14.7 ± 2.1 6.7 ± 1.8 

Polycrystalline W at 

100 N/s 

97 ± 49 5.5 ± 2.4 18.7 ± 1.7 

 

7.6 ± 1.3 

 180 

Table 3(c). Pop-in behaviour with the 720 nm end radius indenter 181 

 Critical load 

(N) 

Depth at pop-in 

(nm) 

Mean pressure 

at pop-in (GPa) 

Maximum 

shear stress at 

pop-in (GPa) 

W(100) at 25 N/s 226 ± 91 6.8 ± 2.0 14.3 ± 2.8 6.3 ± 1.1 

W(100) at 100 N/s 237 ± 89 6.5 ± 1.8 15.8 ± 2.2 6.4 ± 0.8 

W(111) at 25 N/s 97 ± 95 4.2 ± 3.1 8.5 ± 2.8 4.3 ± 1.6 

W(111) at 100 N/s 100 ± 51 4.2 ± 1.5 10.2 ± 1.6 4.8 ± 0.8 

 182 

 183 

Table 3(d). Pop-in behaviour with the 2800 nm end radius indenter 184 

 Critical load 

(N) 

Depth at pop-in 

(nm) 

Mean pressure 

at pop-in (GPa) 

Maximum 

shear stress at 

pop-in (GPa) 

W(100) 380 ± 134 7.3 ± 1.7 5.7 ± 0.8 3.0 ± 0.4 

W(111) 250 ± 137 5.3 ± 2.0 5.0 ± 1.2 2.6 ± 0.5 
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Measurements were also performed with the indenter with end radius R = 350 nm over the load 185 

range 10-500 mN where it has the Berkovich geometry. The loading rate was 10 mN/s, the 186 

unloading rate was 20 mN/s and the hold at peak load was for 30s. Additional tests were run with a 187 

loading time constant equal to 15 s and unloading equal to 2 s. No evidence of rate sensitivity after 188 

the 30 s hold at peak load was found, which is consistent with the small indentation creep strain of 189 

tungsten at room temperature reported in the past [4]. The thermal drift correction was from 40 s in 190 

contact prior to loading and at 90% unloading in all the tests. The reduced indentation modulus (Er) 191 

is related to the elastic modulus (Es) of the material according to 
1

𝐸𝑟
=

1−𝑣𝑠
2

𝐸𝑠
+

1−𝑣𝑖
2

𝐸𝑖
 where Ei is the 192 

elastic modulus of the diamond indenter and υs and υi are the Poisson’s ratios of the sample and 193 

indenter respectively. For tungsten, a reduced indentation modulus of 321 GPa corresponds to an 194 

elastic modulus of 411 GPa. The mean contact pressure up to pop-in can be determined from 195 

Hertzian mechanics as 𝑃𝑚 = 𝐿/𝜋𝑎2 where L is the applied load and the contact radius a is given by 196 

𝑎 = √2𝑅ℎ𝑐 − ℎ𝑐
2 where hc = (hmax + hr)/2 so that hc is the contact depth, hmax is the depth under load 197 

at pop-in and hr is the residual depth which is taken as zero as the contact is fully elastic to the 198 

points considered. The maximum shear stress (𝜏𝑚𝑎𝑥) can also be determined from Hertzian 199 

analysis. At pop-in, 𝜏𝑚𝑎𝑥 = 0.31𝑝0 where 𝑝0 = √6𝑃𝐸𝑟
2

𝜋3𝑅2

3

. 200 

 201 

  202 
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3. Results  203 

 204 
 205 

Figure 1: Typical indentation behaviour on the W(100) with the R = 350 nm tip 206 

 207 

Typical indentation behaviour on the W(100) with the R = 350 nm probe is shown in figure 1. The 208 

loading behaviour is elastic up until a pop-in occurs. If no pop-in occurred before the peak load was 209 

reached, then the contact was completely elastic and the entire loading curve could be fitted by 210 

Hertzian mechanics (the dotted line in figure 1) using the power-law relationship Ph1.5 according 211 

to 𝑃 =
4

3
𝐸𝑟𝑅0.5ℎ1.5. The pop-in data with the R = 350 nm probe at 100 µN/s are displayed as 212 

cumulative probability plots in figures 2(a) to 2(d).  213 
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 214 

Figure 2(a) 215 

 216 

 217 
 218 

Figure 2(b) 219 

 220 
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 221 
 222 

Figure 2(c) 223 

 224 

 225 
Figure 2(d) 226 

 227 

Figure 2: Indenter radius dependence of the pop-in behaviour with loading rate = 100 N/s (a) 228 

critical load (b) mean pressure at pop-in (c) maximum shear stress (d) variation in maximum shear 229 

stress with indenter radius for W(100) (diamonds) and W(111) (crosses). The median values at each 230 

R are shown by the larger circles. The shaded region covers from G/5 to G/30 where G is shear 231 

modulus. 232 
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The critical load for pop-in on W(100) varied with the indenter radius as shown in Figure 2(a). 233 

From Figure 2 in conjunction with Table 3, no evidence was found that would suggest the influence 234 

of loading rate on the load required for pop-in on any of the samples studied. The pop-in events 235 

were much less pronounced on the W(111) and polycrystalline tungsten samples, with the yield 236 

event being more commonly associated with a smaller displacement burst followed by further small 237 

periodic events as the load increased. The distribution of cumulative probability of pop-in for 238 

W(111) in tests at 25 µN/s or 100 µN/s was different to that for the other two samples as illustrated 239 

in Figure 3 for tests at 25 µN/s.  240 

 241 
 242 

Figure 3: Cumulative probability plots of the critical load on W(100), W(111) and thepolycrystalline 243 

W samples with the R = 350 nm tip at 25 µN/s. 244 

 245 

The sample with the (111) orientation showed a tighter distribution. After pop-in, the hardness from 246 

the unloading curve analysis was lower than the mean pressure in the contact area at pop-in. 247 

Analysis of post-yield unloading curves showed the W(111) and polycrystalline tungsten samples to 248 

have consistently higher hardness than the W(100) as summarised in Table 4 (a-d).  249 

 250 
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Table 4(a).Hardness and elastic modulus from nanoindentation to 500 µN with the 150 nm 251 

end radius indenter 252 

 H (GPa) Er(GPa) hc (nm) 

W(100) at 25 N/s 5.45 ± 0.25 322 ± 36 45.9 ± 1.4 

W(100) at 100 N/s 5.99 ± 0.35 322 ± 41 43.2 ± 1.6 

W(111) at 25 N/s 7.84 ± 0.72 345 ± 43 36.3 ± 2.2 

W(111) at 100 N/s 7.52 ± 0.55 320 ± 36 37.2 ± 1.8 

 253 

Table 4(b).Hardness and elastic modulus from nanoindentation to 500 µN with the 350 nm 254 

end radius indenter 255 

 H (GPa) Er(GPa) hc (nm) 

W(100) at 25 N/s 6.91 ± 0.34 325 ± 39 31.0 ± 1.2 

W(100) at 100 N/s 6.91 ± 0.41 321 ± 43 31.1 ± 1.4 

W(111) at 25 N/s 8.73 ± 1.1 335 ± 47 26.1 ± 2.4 

W(111) at 100 N/s 8.68 ± 0.86 323 ± 41 26.2 ± 1.9 

Polycrystalline W at 25 N/s 9.63 ± 1.1 344 ± 45 24.2 ± 2.0 

Polycrystalline W at 100 N/s 9.43 ± 0.96 338 ± 37 24.5 ± 1.9 

 256 

Table 4(c).Hardness and elastic modulus from nanoindentation to 1000 µN with the 720 nm 257 

end radius indenter 258 

 H (GPa) Er (GPa) hc (nm) 

W(100) at 25 N/s 5.98 ± 0.25 326 ± 24 40.6 ± 1.4 

W(100) at 100 N/s 6.21 ± 0.27 319 ± 18 41.8 ± 1.4 

W(111) at 25 N/s 7.28 ± 0.68 324 ± 21 35.9 ± 2.6 

W(111) at 100 N/s 7.45 ± 0.55 324 ± 21 35.1 ± 2.0 

 259 

Table 4(d).Hardness and elastic modulus from nanoindentationto 3000 µN with the2800 nm 260 

end radius indenter 261 

 H (GPa) Er(GPa) hc (nm) 

W(100) 4.84 ± 0.20 297 ± 24 35.6 ± 1.5 

W(111) 5.84 ± 0.67 301 ± 39 29.8 ± 3.2 

 262 

 263 

The elastic moduli of all three samples were very similar, with the polycrystalline sample being 264 

typically ~3 % stiffer. The measurements at higher load confirmed the expected ISE upon hardness 265 

for all three samples but not depth dependence of their elastic properties. There was a linear 266 

relationship between H2 and 1/h over the depth range of the 10-500 mN data so they were analysed 267 

with a Nix-Gao [18] plot using the formula  
𝐻

𝐻0
= √1 +

ℎ∗

ℎ

2
 to determine the characteristic length h* 268 

and macroscopic hardness, H0, which are shown in Table 5. 269 

 270 

 271 

 272 

273 
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Table 5.Nix-Gao fitting parameters 274 

 H0 (GPa) h* (nm) 

W(100) 3.87 342 

W(111) 4.79 463 

Polycrystalline W 5.21 278 

 275 

4. Discussion 276 

Marked crystallographic and contact size effects on the incipient plasticity of tungsten were found 277 

in this study. Surface profilometry measurements and indentations to higher loads were used to 278 

provide relevant information regarding the surface roughness and conventional size effect upon 279 

hardness of the samples. Across the entire load range of the instrument used (0-500 mN), the 280 

unloading curve data showed constant elastic modulus, consistent with the literature value (Er = 321 281 

GPa; E = 411 GPa) with the surface roughness increasing the variability at low indentation depth. 282 

Pile-up around the indentation due to cross-slip can increase the contact area leading to an over-283 

estimate of the elastic modulus [19] with an increase of >10% reported for W(100) [20] and ion-284 

irradiated polycrystalline tungsten [21]. In the current study, a much smaller effect was found in line 285 

with other recent results on polycrystalline tungsten [21]. The slightly lower modulus obtained from 286 

the measurements with the largest radius may also be an effect of the surface roughness together 287 

with a reduction in pile-up. Walter et al. [22] reported that the modulus of CrN films with Ra = 2-10 288 

nm was under-estimated by 5-14 % in simulations with a spherical indenter having an end radius of 289 

50m. 290 

 All three samples showed a strong ISE upon hardness with the Nix-Gao plot revealing 291 

marked differences in their characteristic length and macroscopic hardness thereby implying a 292 

higher dislocation density at or near the surface of the W(111) sample. The rough surface model of 293 

Kim et al. [23] suggests that the characteristic length can be under-estimated in the standard Nix-294 

Gao treatment unless roughness is taken into account. For the Ni surfaces, they tested and found 295 

that the under-estimations were around 70 nm for surfaces with Ra= 3.2 and 8.7 nm. If similar 296 

behaviour of tungsten samples used in this study is assumed, the characteristic length of the 297 

polycrystalline sample becomes very close to that of W(100), but its difference  with that of W(111) 298 
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is increased. 299 

 Significantly higher critical loads for pop-in were found for W(100) than for W(111), 300 

consistent with previous observations by Yao et al [1]. With an indenter of R = 675 nm, Yao et al [1] 301 

reported critical loads on electropolished W single-crystals of the order of 7 mN and 2.5 mN for 302 

W(100) and W(111) respectively, corresponding to median shear stresses at pop-in of around 21 and 303 

14 GPa. On Ta, the increase in pop-in load on (100) compared to (110) and (111) has been ascribed 304 

to differences in the stresses. FEA analysis showed that the high hydrostatic pressures in the 305 

nanoindentation test aid nucleating defects (e.g. twins, stacking faults) [24], with more recent 306 

support shown by MD simulations [25].  307 

 For W(100), the mean maximum shear stress determined with the R = 150 nm indenter was 308 

around 15 GPa, with a maximum value of 23.8 GPa. The theoretical shear strength of crystalline 309 

metals can be estimated by dividing the shear modulus by 2, and is generally quoted to be in the 310 

range of G/5 to G/15. As the shear modulus (G) of W is 161 GPa, the theoretical strength will be in 311 

the range of 10.7 to 32.2 GPa, and is 25.6 GPa at G/2. The limits at G/5 and G/15 are shown by 312 

the shaded region in Figure 2(d). The data from use of the sharper indenters is consistent with the 313 

pop-in occurring when the max under the indenter approaches the theoretical strength, as has been 314 

reported in previous studies on BCC[9], FCC metals [7] and BCC high-entropy alloys [10]. As 315 

shown in Figure 2(d), values of 𝜏𝑚𝑎𝑥 were lower for the (111) orientation of W. Hertzian contact 316 

mechanics assumes an ideally flat surface which is however not a practical reality. Although all the 317 

tungsten samples were highly polished, Table 1 shows there were differences in surface roughness 318 

with the W(111) and polycrystalline W being rougher than the W(100). With an increase in surface 319 

roughness, the pressure on the surface of the asperities will be higher than that predicted by the 320 

Hertzian treatment (which assumes an initially flat surface) so that although the apparent pressure at 321 

pop-in is lower for rougher surfaces the real pressure may be significantly higher, as has been 322 

shown in MD simulations of thin copper coatings [26].  323 

 In tests on annealed and electropolished tungsten with spherical diamonds with end radii of 324 
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1 and 13.5 µm, Pathak et al. [12, 14] observed higher stresses at pop-in with the sharper probe. Data 325 

with the blunter probe was more stochastic in nature. Notwithstanding the fact that they tested an 326 

electropolished surface, their data was in quite good agreement with the results for W(100) shown 327 

in Figure 2 (b). Shim et al [13] provided a qualitative explanation for the radius dependence they 328 

found in Ni(100) based on the average dislocation spacing and the stresses required to activate 329 

existing dislocations (low stress) or to nucleate new ones in dislocation-free regions (higher stress). 330 

Changing the indenter size changed the size of the highly stressed zone (which has been estimated 331 

as ~2.4a by Pathak et al. [12, 14]) relative to the average dislocation spacing. If the radius of the 332 

indenter tip is much smaller than the spacing needed between dislocations for plasticity to occur, 333 

then the applied stress needs to be sufficiently large to nucleate a dislocation. With larger tip radii, 334 

the size of the indenter is much larger than the spacing between the dislocation and the stress 335 

required to move pre-existing dislocations is lower. Wu et al. [17] recently developed a combined 336 

statistical model for the radius dependence providing further evidence that incipient plasticity could 337 

be triggered either by homogeneous nucleation of dislocations when a sharp indenter is used or by 338 

the activation of existing dislocations when indenting with tips with larger end radii. The strength 339 

drops more rapidly with increasing R due to the increasing possibility of encountering pre-existing 340 

defects. The model does not consider surface roughness and it seems likely that this will also 341 

contribute to the observed size effect. Knap and Ortiz used multiscale simulations to investigate tip-342 

radius effects during nanoindentation of Au(001) with 7 and 70 nm indenters [27]. In their 343 

simulations, they found that the dislocation activity occurred before any deviation in the force curve 344 

was observed. If a similar trend is also found for BCC metals and continues to larger indenter sizes, 345 

then the maximum shear stress-radius dependence would be even larger than has been reported in 346 

experimental studies to date. 347 

 In the experiments on tungsten performed in this work, there was no discernible rate 348 

dependence over 25-200 µN/s in either the stochastics of the pop-ins or the mean load value. 349 

Although stress-based thermally activated dislocation nucleation is expected to result in the onset of 350 
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plasticity increasing with loading rate [28], the effect is slight in BCC metals compared to FCC 351 

metals [9]. Biener et al. [9] reported a very small rate dependence on Ta(001) with RMS roughness 352 

well under 1 nm, with the median value of the critical load for pop-in increasing by around 12% 353 

over a x100 increase in loading rate from 50 µN/s to 5000 µN/s. The absence of rate dependence in 354 

this particular study over a much smaller load range appears to be due to a combination of the 355 

intrinsic minimal rate sensitivity of tungsten (where creep strain during the 30 s hold period at peak 356 

load in the higher load indentation tests is less than 0.015) and the higher surface roughness 357 

(presumably local differences in roughness) of the samples. 358 

 Surface preparation is important as it influences the dislocation density and roughness of the 359 

final surface [29]. Pathak et al. [12, 14] noted that rough mechanical polishing generally leaves a 360 

disturbed surface layer with higher dislocation content which can be removed by electropolishing. 361 

On another BCC metal, Mo(001), Wang et al. [30] reported that the highest pop-in critical load was 362 

observed after electropolishing. Smaller loads were found after colloidal silica polishing, and 363 

polishing by alumina produced defects sufficient to fully suppress pop-in. In a study on a FCC 364 

metal, Al (111) by Minor et al. [7], the loading data was fitted to a plot of a Hertzian elastic 365 

response. Although surface roughness was not mentioned, the presence of roughness could be 366 

inferred by deviation of the experimental data from the elastic fitting by up to ~1 nm. Shibutani et 367 

al. [8] studied the influence of surface roughness on the pop-ins observed when indenting Al(001) 368 

with a tip of ~50 nm end radius, finding much lower critical loads for less highly polished surfaces. 369 

In interfacial force microscopy on a passivated gold surface the critical load for pop-in was reported 370 

to be 30-45 % lower near a step than in defect-free regions [31]. In a molecular dynamics study of 371 

the influence of surface roughness on nanoindentation, it was reported that defects typically initiate 372 

at the side of an asperity [26, 32].  373 

 The pop-in events were much less pronounced for the W(111) and polycrystalline tungsten 374 

samples, with the yield event being more commonly associated with a smaller displacement burst 375 

followed by further small periodic events as the load increased. In addition to the roughness effect 376 
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described above, this appears to be partially due to higher dislocation density in these samples 377 

causing an increase in the hardness. Studies have also shown that higher pre-existing dislocation 378 

density lowers the critical load for pop-in. In high-purity aluminium, a reduction in probability of 379 

pop-in was observed when dislocation density increased [33]. In MgO indented with a 9.5 µm tip, 380 

Montagne et al. [29] noted the contact was elastic up to a load of 300 mN when there were no pre-381 

existing dislocations but reduced nearly to zero for a pre-existing density of 1.2 x 107 cm-2. There 382 

are differences in the distributions of cumulative probability of the critical load for pop-in between 383 

the samples (Figure 3). The extent of dispersion in the first critical load on the FCC Al has been 384 

reported to widen with a reduction in roughness [8]. Figure 3 shows that similar behaviour can be 385 

seen in W(111). While the average surface roughness is higher on the polycrystalline sample, there 386 

are smoother regions so that when indentations are made into these regions the data can more 387 

closely approach that obtained from the W(100), but if measurements are made in rougher regions 388 

the corresponding critical load is much lower. Yao et al. [1] reported a reduction in critical load for 389 

pop-in on W after D-implantation and Biener et al [9] reported a complete suppression on Ta(001) 390 

after ion energy ion bombardment. In studies such as these, it is not yet clear how much of the 391 

reduction in pop-in is due to surface roughening and how much is due to higher pre-existing 392 

dislocations in the near-surface layers of the tungsten. While they are to some extent interlinked, 393 

further work on ion-irradiated samples may help to more fully deconvolute these effects. 394 

 395 

5.Conclusions 396 

The results being reported in this work confirm the statistical nature of incipient plasticity in the 397 

nanoindentation response of tungsten over a wide range of conditions. Indenter radius (and 398 

therefore contact size), surface roughness and crystallographic orientation were varied during the 399 

experiments. The conclusions can be summarised as follows:  400 

1. A strong size effect was observed, with the stress for incipient plasticity increasing as the 401 

indenter radius was decreased. The maximum shear stress approached the theoretical shear 402 
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strength when W(100) was indented with the tip with smallest radius, whereas the (111) 403 

orientation showed pop-ins at lower stress levels, which has been attributed to surface 404 

roughness and greater dislocation density on the W(111) sample 405 

2. Surface preparation plays an important role in the statistical nature of pop-in during loading 406 

in nanoindentation tests. While they are to some extent interlinked, it was not clear whether 407 

the roughening of the surface itself or the defect generation in the near surface layers caused 408 

by it has the greater effect in reducing the load at which pop-in occurs. 409 

 410 
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