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Introduction 
 

Material properties can vary greatly with changes in temperature. 
Thus, when developing or characterising the mechanical properties 
of coatings and bulk materials for high temperature applications, 
test conditions should mimic in-service conditions as closely as 
possible. 
 

Nanomechanical tests have been performed with Micro Materials 
NanoTest systems at test temperatures up to 1000 °C. This has led 
to a number of publications on a wide range of materials. 
 

In the tables on pages 2-5 of this note, published NanoTest studies 
are grouped into several categories based on the material tested: 
 

(1) Nuclear materials 
(2) PVD coatings for cutting tools 
(3) Aerospace materials  
(4) Materials with other high temperature applications 
 

The maximum test temperature and year of publication is shown 
for each reference. The choice of indenter material and test 
environment is influenced by the sample being tested and the test 
temperature range. These factors are discussed in detail in 
Nanomechanics to 1000 °C for high temperature mechanical 
properties of bulk materials and hard coatings [ref 48]. 
 

The figure below shows the maximum published nanomechanical 
testing temperatures for various nanoindenter system 

configurations up to 2019. The dominance of the NanoTest (+) is 

demonstrated, in particular for temperatures > 500 °C. 
 

 
 
 
 
 
 
 

Important factors for High Temperature Testing  
 

When measuring at elevated temperatures, it is essential that the 
sample and indenter are the same temperature when the indentation 
takes place. Any temperature mismatch will result in higher thermal 
drift, i.e. measurement error, caused by an expansion or contraction of 
the sample, indenter or instrument. 
 

 
 

The horizontal high temperature configuration of the NanoTest (left) and a 

close-up view of an indenter and sample at 950 C in vacuum (right). (Figures 
above left and below left courtesy of Dr Jeff Wheeler, ETH Zurich.) 

 
NanoTest systems have design advantages which result in ultra-low 

thermal drift up to the maximum temperatures of 850 C for the 
Vantage system, and 1000 °C for the NanoTest Xtreme: 
   

Active tip heating – the indenter and the sample are both actively and 
independently heated, resulting in an isothermal contact before the 
experiment begins. 
 

Horizontal loading – the unique load head configuration of the 
NanoTest systems means that there is no heat flow onto the loading 
head or depth measurement sensor. 
 

Highly localised heating – a heat shield and insulating shroud around 
the heated zone ensures instrument stability during high temperature 
experiments. 
  

Patented control protocol – software routines are used to precisely 
match the indenter and stage temperatures to ±0.1 °C. 
  

Time-dependent measurements – As no significant thermal drift occurs 
during high temperature measurements it becomes possible to perform 
long duration tests such as indentation creep tests and SPM imaging. 
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1. Nuclear materials  
 

Materials System Indenter 

material 

Test environment Max. test temp. 

(°C) 

Year Reference 

304 austenitic stainless 

steel 
 

cBN argon 300 2015 1 

Zr-2.5%Nb 
 

sapphire air 400 2011 2 

Nanoscale metallic 

multilayers 
 

diamond argon 400 2013, 2014, 

 2018 

3-6 

SiC in TRISO fuel particles 
 

diamond air 500 2015, 2016 7, 8 

SiC-SiC composite 
 

cBN 95%Ar/5%H2 500 2019 9 

PM2000 ODS alloy 
 

cBN argon 600 2014 10 

PH 13-8 Maraging steel 
 

cBN 95%Ar/5%H2 625 2016 11 

W-1%Ta alloy 
 

cBN vacuum 700 2020 12 

Tungsten 
 

cBN vacuum 750 2015 13 

Inconel 617 
 

cBN air 800 2017 14 

Tungsten cBN vacuum 950 2015, 2017, 

2018 

15-17 

Pyrolytic graphite diamond vacuum 600 2022 50 

      

δ-phase zircaloy hydride diamond nitrogen 300 2020 51 

      

Inconel 718 cBN nitrogen 650 2019 54 

      

Uranium dioxide cBN argon 500 2021 55 

      

Uranium dioxide cBN argon 600 2019 56 

      

ODS steels cBN argon 600 2019 61 

      

Inconel 625/BNi-2 diamond air 490 2020 69 

      

Inconel 617 diamond air 200 2016, 2018 72, 73 

      

Tungsten carbide diamond vacuum 600 2023 75 

 



 
 

2. PVD hard coatings 
 

Materials System Indenter 

material 

Test environment Max. test temp. 

(°C) 

Year Reference 

TiAlN and TiN 
 

diamond air 300 2019 18 

TiAlN 
 

diamond air 350 2012 19 

TiAlN, AlCrN 
 

diamond air 500 2006 20 

AlTiN 
 

diamond air 500 2006, 2008 21-23 

TiAlN 
 

diamond air 500 2007 24 

TiAlCrSiYN/TiAlCrN 
 

cBN argon 600 2012 25, 26 

TiAlSiN 
 

cBN argon 600 2019 27 

SiC, SiCN 
 

cBN argon 650 2015 28 

TiAlN, TiCN 

 

cBN argon 750 2014 29 

Ti2AlN MAX phase sapphire vacuum 800 2022 62 

      

DLC coatings diamond air 400 2020 66 

      

Al/SiC nanolaminates diamond air 150 2020 67 

      

TiN/ZrN nanolaminates cBN argon 450 2023 70 

      

Nanolayered CrAlTiN cBN argon 700 2014 71 

      

      

 
3. Aerospace materials 
 

Materials System Indenter 

material 

Test environment Max. test temp. 

(°C) 

Year Reference 

Ni-base superalloys 
 

sapphire argon 400 2008 32, 33 

Ni-base superalloy 
 

sapphire vacuum 665 2012 34 

Ni-base superalloy, 

MCrAlY bond coat 

 

sapphire vacuum 1000 2017 35 

SiC ceramic matrix 

composites 

 

sapphire argon 800 2021 49 

      

      

      



  

4. Other materials 
 

Materials System Indenter 

material 

Test environment Max. test temp. 

(°C) 

Year Reference 

(Pr,Ce)O2- cathode 

material 

 

G18 glass-ceramic 

 

-Mg17Al12 phase 
 

cBN 

 

 

cBN 

 

sapphire 

argon/N2 

 

 

argon 

 

air 

600 

 

 

750 

 

278 

2016 

 

 

2011 

 

2016 

30 

 

 

31 

 

36 

Magnesium 
 

diamond air 300 2015 37 

NiTiHf shape memory 

alloy 
 

diamond air 340 2017 38 

MgAl2O4 spinel 
 

diamond air 400 2009 39 

Silicon (100) 
 

diamond air 400 2009 40 

AlCu alloy 
 

cBN argon 460 2016 41 

CuNb composite 

 

cBN argon 500 2015 42 

Fused silica 

 

cBN argon 600 2011 43 

Gold 

 

sapphire vacuum 665 2012 34 

CVD Al2O3 coating  

 

cBN 95%Ar/5%H2 700 2015 44 

WC-Co 

 

cBN vacuum 700 2020 45 

Silicon 

 

cBN vacuum 770 2017 46 

Cr2AlC MAX-phase sapphire vacuum 980 2019 47 

      

Ti-based bulk metallic 

glasses 

diamond argon 400 2020 52 

      

Bulk metallic glasses diamond air 200 2020 53 

 

Sintered nano-copper 

 

 

diamond 

 

air 

 

200 

 

2022 

 

 

57 

magnesium/carbon 

nanotube nanocomposites 

cBN argon 300 2021 58 
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